3.397 \(\int \frac{1}{(d+e x^2) \sqrt{2+3 x^2+x^4}} \, dx\)

Optimal. Leaf size=124 \[ \frac{\left (x^2+1\right ) \sqrt{\frac{x^2+2}{x^2+1}} \text{EllipticF}\left (\tan ^{-1}(x),\frac{1}{2}\right )}{\sqrt{2} \sqrt{x^4+3 x^2+2} (d-e)}-\frac{e \left (x^2+1\right ) \sqrt{\frac{x^2+2}{x^2+1}} \Pi \left (1-\frac{e}{d};\tan ^{-1}(x)|\frac{1}{2}\right )}{\sqrt{2} d \sqrt{x^4+3 x^2+2} (d-e)} \]

[Out]

((1 + x^2)*Sqrt[(2 + x^2)/(1 + x^2)]*EllipticF[ArcTan[x], 1/2])/(Sqrt[2]*(d - e)*Sqrt[2 + 3*x^2 + x^4]) - (e*(
1 + x^2)*Sqrt[(2 + x^2)/(1 + x^2)]*EllipticPi[1 - e/d, ArcTan[x], 1/2])/(Sqrt[2]*d*(d - e)*Sqrt[2 + 3*x^2 + x^
4])

________________________________________________________________________________________

Rubi [A]  time = 0.0909018, antiderivative size = 124, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.167, Rules used = {1214, 1099, 1456, 539} \[ \frac{\left (x^2+1\right ) \sqrt{\frac{x^2+2}{x^2+1}} F\left (\tan ^{-1}(x)|\frac{1}{2}\right )}{\sqrt{2} \sqrt{x^4+3 x^2+2} (d-e)}-\frac{e \left (x^2+2\right ) \Pi \left (1-\frac{e}{d};\tan ^{-1}(x)|\frac{1}{2}\right )}{\sqrt{2} d \sqrt{\frac{x^2+2}{x^2+1}} \sqrt{x^4+3 x^2+2} (d-e)} \]

Antiderivative was successfully verified.

[In]

Int[1/((d + e*x^2)*Sqrt[2 + 3*x^2 + x^4]),x]

[Out]

((1 + x^2)*Sqrt[(2 + x^2)/(1 + x^2)]*EllipticF[ArcTan[x], 1/2])/(Sqrt[2]*(d - e)*Sqrt[2 + 3*x^2 + x^4]) - (e*(
2 + x^2)*EllipticPi[1 - e/d, ArcTan[x], 1/2])/(Sqrt[2]*d*(d - e)*Sqrt[(2 + x^2)/(1 + x^2)]*Sqrt[2 + 3*x^2 + x^
4])

Rule 1214

Int[1/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4]), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c,
 2]}, Dist[(2*c)/(2*c*d - e*(b - q)), Int[1/Sqrt[a + b*x^2 + c*x^4], x], x] - Dist[e/(2*c*d - e*(b - q)), Int[
(b - q + 2*c*x^2)/((d + e*x^2)*Sqrt[a + b*x^2 + c*x^4]), x], x]] /; FreeQ[{a, b, c, d, e}, x] && GtQ[b^2 - 4*a
*c, 0] &&  !LtQ[c, 0]

Rule 1099

Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[((2*a + (b +
q)*x^2)*Sqrt[(2*a + (b - q)*x^2)/(2*a + (b + q)*x^2)]*EllipticF[ArcTan[Rt[(b + q)/(2*a), 2]*x], (2*q)/(b + q)]
)/(2*a*Rt[(b + q)/(2*a), 2]*Sqrt[a + b*x^2 + c*x^4]), x] /; PosQ[(b + q)/a] &&  !(PosQ[(b - q)/a] && SimplerSq
rtQ[(b - q)/(2*a), (b + q)/(2*a)])] /; FreeQ[{a, b, c}, x] && GtQ[b^2 - 4*a*c, 0]

Rule 1456

Int[((d_) + (e_.)*(x_)^(n_))^(q_.)*((f_) + (g_.)*(x_)^(n_))^(r_.)*((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_))^
(p_), x_Symbol] :> Dist[(a + b*x^n + c*x^(2*n))^FracPart[p]/((d + e*x^n)^FracPart[p]*(a/d + (c*x^n)/e)^FracPar
t[p]), Int[(d + e*x^n)^(p + q)*(f + g*x^n)^r*(a/d + (c*x^n)/e)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, n, p,
q, r}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p]

Rule 539

Int[Sqrt[(c_) + (d_.)*(x_)^2]/(((a_) + (b_.)*(x_)^2)*Sqrt[(e_) + (f_.)*(x_)^2]), x_Symbol] :> Simp[(c*Sqrt[e +
 f*x^2]*EllipticPi[1 - (b*c)/(a*d), ArcTan[Rt[d/c, 2]*x], 1 - (c*f)/(d*e)])/(a*e*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sq
rt[(c*(e + f*x^2))/(e*(c + d*x^2))]), x] /; FreeQ[{a, b, c, d, e, f}, x] && PosQ[d/c]

Rubi steps

\begin{align*} \int \frac{1}{\left (d+e x^2\right ) \sqrt{2+3 x^2+x^4}} \, dx &=\frac{\int \frac{1}{\sqrt{2+3 x^2+x^4}} \, dx}{d-e}-\frac{e \int \frac{2+2 x^2}{\left (d+e x^2\right ) \sqrt{2+3 x^2+x^4}} \, dx}{2 (d-e)}\\ &=\frac{\left (1+x^2\right ) \sqrt{\frac{2+x^2}{1+x^2}} F\left (\tan ^{-1}(x)|\frac{1}{2}\right )}{\sqrt{2} (d-e) \sqrt{2+3 x^2+x^4}}-\frac{\left (e \sqrt{1+\frac{x^2}{2}} \sqrt{2+2 x^2}\right ) \int \frac{\sqrt{2+2 x^2}}{\sqrt{1+\frac{x^2}{2}} \left (d+e x^2\right )} \, dx}{2 (d-e) \sqrt{2+3 x^2+x^4}}\\ &=\frac{\left (1+x^2\right ) \sqrt{\frac{2+x^2}{1+x^2}} F\left (\tan ^{-1}(x)|\frac{1}{2}\right )}{\sqrt{2} (d-e) \sqrt{2+3 x^2+x^4}}-\frac{e \left (2+x^2\right ) \Pi \left (1-\frac{e}{d};\tan ^{-1}(x)|\frac{1}{2}\right )}{\sqrt{2} d (d-e) \sqrt{\frac{2+x^2}{1+x^2}} \sqrt{2+3 x^2+x^4}}\\ \end{align*}

Mathematica [C]  time = 0.109898, size = 59, normalized size = 0.48 \[ -\frac{i \sqrt{x^2+1} \sqrt{x^2+2} \Pi \left (\frac{2 e}{d};\left .i \sinh ^{-1}\left (\frac{x}{\sqrt{2}}\right )\right |2\right )}{d \sqrt{x^4+3 x^2+2}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((d + e*x^2)*Sqrt[2 + 3*x^2 + x^4]),x]

[Out]

((-I)*Sqrt[1 + x^2]*Sqrt[2 + x^2]*EllipticPi[(2*e)/d, I*ArcSinh[x/Sqrt[2]], 2])/(d*Sqrt[2 + 3*x^2 + x^4])

________________________________________________________________________________________

Maple [C]  time = 0.016, size = 55, normalized size = 0.4 \begin{align*}{\frac{-i\sqrt{2}}{d}\sqrt{1+{\frac{{x}^{2}}{2}}}\sqrt{{x}^{2}+1}{\it EllipticPi} \left ({\frac{i}{2}}x\sqrt{2},2\,{\frac{e}{d}},\sqrt{2} \right ){\frac{1}{\sqrt{{x}^{4}+3\,{x}^{2}+2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(e*x^2+d)/(x^4+3*x^2+2)^(1/2),x)

[Out]

-I/d*2^(1/2)*(1+1/2*x^2)^(1/2)*(x^2+1)^(1/2)/(x^4+3*x^2+2)^(1/2)*EllipticPi(1/2*I*x*2^(1/2),2*e/d,2^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x^2+d)/(x^4+3*x^2+2)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{x^{4} + 3 \, x^{2} + 2}}{e x^{6} +{\left (d + 3 \, e\right )} x^{4} +{\left (3 \, d + 2 \, e\right )} x^{2} + 2 \, d}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x^2+d)/(x^4+3*x^2+2)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(x^4 + 3*x^2 + 2)/(e*x^6 + (d + 3*e)*x^4 + (3*d + 2*e)*x^2 + 2*d), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{\left (x^{2} + 1\right ) \left (x^{2} + 2\right )} \left (d + e x^{2}\right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x**2+d)/(x**4+3*x**2+2)**(1/2),x)

[Out]

Integral(1/(sqrt((x**2 + 1)*(x**2 + 2))*(d + e*x**2)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{x^{4} + 3 \, x^{2} + 2}{\left (e x^{2} + d\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x^2+d)/(x^4+3*x^2+2)^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(x^4 + 3*x^2 + 2)*(e*x^2 + d)), x)